13 research outputs found

    Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts.

    Get PDF
    The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGγC(-/-)), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNγ in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)

    Get PDF
    These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion

    New advances in CMV and immunosenescence

    No full text
    Immunosenescence, defined as the age-associated dysregulation and dysfunction of the immune system, is characterized by impaired protective immunity and decreased efficacy of vaccines. An increasing number of immunological, clinical and epidemiological studies suggest that persistent Cytomegalovirus (CMV) infection is associated with accelerated aging of the immune system and with several age-related diseases. However, current evidence on whether and how human CMV (HCMV) infection is implicated in immunosenescence and in age-related diseases remains incomplete and many aspects of CMV involvement in immune aging remain controversial. The attendees of the 4th International Workshop on “CMV & Immunosenescence”, held in Parma, Italy, 25–27th March, 2013, presented and discussed data related to these open questions, which are reported in this commentary

    Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency.

    Get PDF
    Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency
    corecore